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Abstract

A numerical method for multiphase flow computations based on a finite-difference formulation with a fixed grid is

described. The method combines ideas from front tracking and the Ghost Fluid Method, with a numerical technique for

velocity extrapolation near the interface. It is shown that the method is able to solve three-dimensional free-surface flow

problems with an incompressible liquid and a compressible gas maintaining the interface sharp. Numerical results are

compared with numerical solutions of the Rayleigh–Plesset equation for the free oscillation of a gas bubble, and in-

dependent front-tracking results for buoyant bubbles. Finally, the effects of an imposed sinusoidal liquid flow on a gas

bubble are investigated.
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1. Introduction

Particularly for three-dimensional problems, multiphase flow computations are notoriously difficult due

to the presence of a deformable phase boundary. For this reason, such computations have attracted

considerable attention, and a variety of numerical techniques has been developed in the last decade.
Even though some success has been achieved by the use of boundary fitted grids [30] and Lagrangian

methods with moving grids [9,12,16,27,31], fixed grid methods associated with interface capturing
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algorithms such as the volume of fluid (VOF) [2], level-set [3,8,28,29], and front tracking [32–34] are

popular because of their comparatively simple implementation and easy extension to three dimensions.

In comparison with interface-capturing methods, in which the interface evolution is ‘‘captured’’ indi-
rectly through the volume-fraction distribution (VOF) or the zero-level-set of the distance function, front-

tracking methods, in which the front is explicitly tracked by marker points, possess an advantage in that the

explicit knowledge of the interface reduces by a considerable amount the resolution needed to maintain

accuracy. Moreover, explicit front tracking permits more than one interface in a single computational cell

without coalescence, which can find important applications in dense bubbly flows, emulsions, etc.

The finite-difference/front-tracking method developed by Tryggvason and co-workers has achieved re-

markable success in two- and three-dimensional multiphase flow simulations [32–34]. The core of the

method is the ‘‘one-field formulation’’ of the Navier–Stokes equations in which both phases are considered
incompressible [25,34]: a single set of conservation equations is established in the whole field containing two

different immiscible fluids, and the material property jumps like density, viscosity, etc. across the interface

are discretized smoothly by the ‘‘immersed boundary’’ method [20,21] and so are the surface tension and

other interfacial terms.

In the ‘‘immersed boundary’’ method, a smeared d-function approximation is applied to force continuity

of the numerical solution within a thin artificial layer around the interface, in spite of the fact that the

physical solution possesses a jump at the interface. This procedure leads to a numerical smearing of the

interface. In many simulations of isothermal multiphase flows, this artificial layer can be kept thinner than
the physical boundary layer, and therefore it does not compromise the solution accuracy. However, under

some circumstances – for example when phase change occurs at the surface of a vapor bubble – an adverse

effect of the numerical smearing may be seen in the heat transfer calculation since the thermal penetration

depth into the liquid becomes so small [15] as to be comparable to the ‘‘artificial’’ layer. Moreover, the

‘‘one-field formulation’’ will not be applicable in some other two-phase flow problems such as acoustic

cavitation, in which compressible gas bubbles are embedded in a (nearly) incompressible liquid.

Motivated by the above-mentioned difficulties, a series of recent publications (see e.g. [3,5–8,18,19]) has

returned to an older boundary-capturing approach [14] (see also [13]), now known as the Ghost Fluid
Method (GFM). This work and its relevant extensions have drawn considerable attention in recent years.

The basic idea (implemented together with a level-set method), is to extrapolate the ‘‘real’’ solution values

in each phase onto fictitious ghost nodes located in the other phase, and then solve the governing equations

in both phases separately. The important feature of this method lies in the fact that the property discon-

tinuities and jump conditions at the interface are well preserved.

In this paper, we consider two-phase flow problems with an incompressible liquid and a compressible gas

and propose a new numerical method obtained as a hybrid of three-dimensional front-tracking [32,34],

Ghost Fluid Method (GFM) [8,18,19], and a numerical technique for velocity extrapolation near the in-
terface [23]. Although the original motivation for the development of this new method was the need to

maintain a sharp interface with an eye toward applications to heat-transfer problems, here we limit our-

selves to isothermal systems in order to describe the approach in a simple context and to be able to compare

the results with those given by other existing methods.
2. Governing equations

The fluid motion in the liquid is assumed to be incompressible and governed by the Navier–Stokes

equations, which can be expressed in conservative form as:

oðquÞ
ot

þr � ðquuÞ ¼ �rp þ qgþr � s; ð1Þ
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r � u ¼ 0: ð2Þ

Here t, q , u, p and g represent time, liquid density, velocity, pressure, and body force, and s is the viscous
stress tensor,

s ¼ l ru
h

þ ruð ÞT
i
; ð3Þ

in which l denotes liquid viscosity and the superscript T the transpose.

The examples used later to illustrate the performance of the method involve dynamic processes of gas

bubbles in a liquid, even though the numerical technique presented here can also be extended to other two-

phase flow phenomena. Since, with these examples, we focus on the manner in which the interface is

handled in the presence of volume changes of the gas region, we will adopt a common simplification to

calculate the gas pressure in the gas region: the gas pressure pg is assumed spatially uniform inside the

bubble and related to the instantaneous bubble volume V by a polytropic law of compression (see e.g. [22]),

pg ¼ p0
V0
V

� �c

; ð4Þ

where c is the polytropic index, and V0 and p0 are the equilibrium volume of the bubble and the corre-

sponding pressure, respectively. In the case of several bubbles modeled in a similar manner, each bubble

would have its own values of V0, p0, and possibly c. If the present method were coupled with a calculation of

the energy equation, one might use, e.g., the liquid–vapor saturation relation to establish the bubble in-

ternal pressure. At another level of complexity, the compressible Navier–Stokes equations could be solved
in the gas region by extending the ideas that we describe below.

The pressure on the liquid side of the interface CðtÞ is related to the bubble internal pressure by the

balance of normal stresses across the interface, namely,

p ¼ pg � rjþ n � s � nð Þ; ð5Þ

where n is the unit normal to the interface drawn outwards from the bubble, r is the surface tension co-

efficient, and j the curvature of the interface which can be computed from

j ¼ r � n: ð6Þ

Moreover, the zero tangential stress boundary condition,

n� ðs � nÞ ¼ 0; ð7Þ

is imposed on the interface [23].
3. Numerical method

Our method is based on a finite difference formulation on a fixed grid and a front-tracking approach. It

consists of several elements, which are now described in turn and finally combined into the algorithm.
3.1. Interface-tracking approach

The interface-tracking method is applied to capture the position and shape of the interface whose motion

is followed [32–34]; in other words, the evolution of the interface separating the two phases is explicitly

tracked by an unstructured moving grid of lower dimension.
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3.1.1. Front construction

In three-dimensional two-phase flow computations, the two-dimensional interface is constructed by

Lagrangian marker points which are connected by triangular elements. The points and elements are
properly labeled and oriented in such a way that the calculated normal direction for each element is drawn

from the gas into the liquid domain. Since more details illustrating the front structure can be found in [32–

34], we do not elaborate here. Fig. 1 shows examples of unstructured coarse and fine grids on the surface of

a spherical bubble.

3.1.2. Indicator function

Since we treat the liquid and gas regions in different ways, it is required that we be able to distinguish

them properly and, particularly near the explicitly marked interface, to identify the fixed grid nodes which
fall within the liquid domain on which the finite difference discretization of the Navier–Stokes equations (1)

and (2) with appropriate boundary conditions (5) and (7) is carried out. For this and other purposes to be

discussed in a later section, we adopt the idea of an indicator function, which was originally introduced and

used for evaluating ‘‘one-field’’ material properties in Tryggvason�s front tracking implementation [32–34].

The indicator function Iðx; tÞ, which is based on a Heaviside function and designed to be 1 if at time t
grid position x is in the liquid and �1 in the gas, is constructed from the known position of the interface

from

Iðx; tÞ ¼ 1� 2

Z
Vg

d3y dð3Þðx� yÞ; ð8Þ

where the integral is over the region Vg occupied by the gas and dð3ÞðxÞ is a three-dimensional d-distribution
obtained as the outer product of one-dimensional ones, dð3ÞðxÞ ¼ dðxÞdðyÞdðzÞ. Upon calculating the gra-

dient we find

rIðx; tÞ ¼ �2

Z
Vg

d3yrdð3Þðx� yÞ ¼ 2

Z
Vg

d3yryd
ð3Þðx� yÞ ¼ 2

I
CðtÞ

dSy nd
ð3Þðx� yÞ; ð9Þ

where the last integral is over the interface CðtÞ. The first step in (9) follows from the dependence of the d-
function on the difference ðx� yÞ and the last step is a consequence of the (generalized) divergence theorem.

Upon taking the divergence of (9) we have the following Poisson equation for the indicator function,
Fig. 1. Two examples of interface grids on a bubble. Left: coarse grid; right: fine grid.
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r2I ¼ r � 2

I
CðtÞ

dSy nd
ð3Þðx

 
� yÞ

!
: ð10Þ

Note that the Poisson equation on a regular domain can be solved by traditional fast Poisson solvers and

the right-hand side of the equation, a function only of the known interface position, is numerically treated

by replacing the d-distribution by a smooth approximation which leads to a discrete approximation of the

integral:Z
CðtÞ

dSy nd
ð3Þðx� yÞ ¼

X
l

Dl
ijknlDSl: ð11Þ

DSl and nl are the area of, and unit normal to, element l, and Dl
ijk is a regularized delta distribution, given

near the point x � ðxi; yj; zkÞ, by [32]

Dl
ijkðyp � xÞ ¼ dðxp � ihÞdðyp � jhÞdðzp � khÞ; ð12Þ

in which yp ¼ ðxp; yp; zpÞ denotes the geometric center of the surface element l, h the grid spacing, and dðrÞ is
taken as [20]

dðrÞ ¼ ð1=2nhÞ½1þ cosðpr=nhÞ�; jrj < nh;
0; jrjP nh:

�
ð13Þ

As a consequence of this regularization, the numerical solution of the Poisson equation (10) gives a con-

tinuous indicator function Iðx; tÞ increasing smoothly from )1 in the gas to 1 in the liquid over a distance of

the order nh from the actual interface. In this step, we usually take the parameter n as 4. The use of this

relatively large value of n increases the smoothing of the front. Since we assign each node to the liquid or

gas region according to the sign of I , this smoothing permits an accurate localization of the grid nodes in
their appropriate phase. Furthermore, the accuracy of the calculation of the normal, found from a finite

difference approximation to rI=jrI j, is also improved. It should be stressed that, unlike the level-set

method, here the indicator function is not used to capture the location of the interface, which is always

explicitly identified by the marker points, but only to decide which phase the grid points belong to. In

particular, the difficulty with mass (or volume) conservation which sometime affects level-set calculations is

avoided.

3.1.3. Front advancement

The interface is advanced in a Lagrangian fashion by integrating

dy

dt
¼ vðy; tÞ; ð14Þ

with v standing for the interfacial velocity. In the absence of phase change, we may simply write the fluid

velocity at the interface as

vðy; tÞ ¼
Z
V ðtÞ

d3xdð3Þðy� xÞuðx; tÞ; ð15Þ

where the integral is over a volume surrounding the interfacial point y. As before, the d-function can be

approximated by the smooth distribution (12) and (13) so that

vLðy; tÞ ¼
X
ijk

DijkðyÞuLðxi; yj; zk; tÞDVijk; ð16Þ
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with the summation extended to the ði; j; kÞ grid points near the interface point y under consideration and

the subscript L denoting the Lth velocity component. In calculating the Dijk used in the front velocity in-

terpolation, we take n in (13) to be 2 as suggested by Peskin [20].

3.2. Finite difference formulation

The front advancement from time level n to nþ 1 is treated explicitly by discretizing the relation (14) as

ynþ1
p ¼ ynp þ vnpDt; ð17Þ

where the subscript p identifies the generic point on the front with position yp and velocity vnp; this velocity is

interpolated from the grid values close to the front according to (16).

With the assumption that both q and l are constant in the incompressible liquid, the first-order pro-

jection method [4] is applied and Eq. (1) is discretized on a MAC grid as

u� � un

Dt
¼ �rh � ðununÞ þ

lrh � rhu
n þ rhu

nð ÞT
h i

q
þ g ð18Þ

and

unþ1 � u�

Dt
þrhp

q
¼ 0; ð19Þ

where the subscript h indicates the standard central-difference discretization of the gradient. Once the in-

termediate velocity u� is computed, a correction step is taken such that the velocity at the new time level
nþ 1 is divergence-free (2),

rh � unþ1 ¼ 0; ð20Þ

which causes the elimination of unþ1 from Eq. (19), resulting in

r2
hp ¼ q

Dt
rh � u�; ð21Þ

coupled with the pressure jump (5) at the interface and the known gas pressure predicted by (4) at the nþ 1

time level. The technique of solving the pressure equation will be discussed in Section 3.4. After the pressure

is obtained, the velocity unþ1 can be updated from

unþ1 ¼ u� � Dt
q
rhp; ð22Þ

which completes the time step.

3.3. Velocity extrapolation

From the above finite difference scheme, it is obvious that even though the Navier–Stokes equations are

only solved on the fixed grid within the liquid domain, if we want to avoid the use of irregular stencils, we

need to extrapolate the liquid velocity field far enough into the gas in order not only to resolve the ad-

vection and viscous terms (18) on the nodes adjacent to the interface on the liquid side, but also for ad-
vecting the marker points of the front (17). The velocity extrapolation may be carried out in various ways

[5,6,23]. Here, we apply a Lagrange multiplier method in which the zero tangential stress boundary con-

dition on the interface (7) is taken as the constraint; this approach is due to Popinet and Zaleski [23] who
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developed it for an axisymmetric problem. We extend their technique to the general three-dimensional case

as follows.

In order to extrapolate the liquid velocity to a point P in the gas near the interface (Fig. 2), we assume
that the local velocity field around P can be expressed as

u ¼ u0 þ T � x; ð23Þ

where u0 ¼ ðu0; v0;w0Þ is a constant, x is the position vector and Tij ¼ oui=oxj is a constant 3� 3 matrix.

With this assumption the viscous stress s around point P can be approximated as l Tþ TT
� �

.

If N grid points in the liquid domain are chosen in the neighborhood of the point P and the unit normal

np to the interface at P as well, then u0 and T can be computed by minimizing the error

U ¼
XN
n¼1

kðu0 þ T � xn � unÞk2 þ k � np
�

� l T
��

þ TT
�
� np
��
; ð24Þ

where k � k denotes the vector norm, xn and un represent the position vector and the corresponding velocity

of the grid nodes in the liquid, and the components ki (i ¼ 1; 2; 3) of k are Lagrange multipliers [17]. The

error U (24) is minimized by taking

oU
oC

¼ 0; ð25Þ

where

C � u0; v0;w0; T11; T12; T13; T21; T22; T23; T31; T32; T33; k1; k2; k3ð Þ: ð26Þ

The resulting linear algebraic equations are solved by the Singular Value Decomposition method [24].

The N points are chosen in the liquid as shown in Fig. 2 (also in Fig. 4 of [23]) such that the cost

function,

XN
n¼1

Dis2ðxn; LÞ2
h

þ vdis2ðxn; xP Þ
i

ð27Þ
Fig. 2. Sketch to illustrate the explanation of the velocity extrapolation procedure around the generic point P .
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has the minimum value. Here Disðxn; LÞ is the distance of the point xn from the line L coinciding with the nP
direction and passing through P , disðxn; xP Þ is the Euclidean distance between points xn and xP , and v a

geometrical parameter typically set to 1=2 [23]. Note that nP can be accurately approximated by taking the
gradient of the indicator function, as mentioned before:

nP ¼ rIðxP ; tÞ
krIðxP ; tÞk

: ð28Þ

In this use for this purpose, the indicator function plays a role analogous to the level-set function in the

level-set method [18,28].
3.4. Solving the pressure equation

After the unprojected velocity u� is obtained, solving the Poisson equation (21) in the liquid domain with
the pressure jump (5) applied at the interface is the next challenge in this problem.

As discussed in Section 1, there are two notable techniques to handle property jumps at the interface, the

‘‘immersed boundary’’ method [20] and the Ghost Fluid Method (GFM) and its extensions [5,6,13,14,19].

Due to the nature of the problem we consider here, we adopt a GFM-similar boundary condition

capturing approach [19] to treat the pressure jump at the interface C separating the liquid (incompressible)

and gas (compressible) domains.

From the point of view of a finite difference approximation, the pressure gradient across C in (21) is not

well behaved because of the jump conditions. For example, take the grid point ði; j; kÞ adjacent to C. If the
Poisson equation (21) at ði; j; kÞ in the liquid domain is discretized in a standard finite difference fashion, we

find

1

Dx
piþ1;j;k � pi;j;k

Dx

� 	h
� pi;j;k � pi�1;j;k

Dx

� 	i
þ 1

Dy
pi;jþ1;k � pi;j;k

Dy

� �

� pi;j;k � pi;j�1;k

Dy

� ��

þ 1

Dz
pi;j;kþ1 � pi;j;k

Dz

� 	h
� pi;j;k � pi;j;k�1

Dz

� 	i
¼ q

Dt

u�iþ1=2;j;k � u�i�1=2;j;k

Dx

�
þ
v�i;jþ1=2;k � v�i;j�1=2;k

Dy
þ
w�

i;j;kþ1=2 � w�
i;j;k�1=2

Dz

�
; ð29Þ

with u, v, w are the x-, y- and z-velocity components. If any neighboring grid node, say ðiþ 1; j; kÞ, happens
to reside in the gas phase and p�iþ1;j;k is taken as the gas pressure pg (4), then the corresponding pressure

gradient term across C,

p�iþ1;j;k � pþi;j;k
Dx

; ð30Þ

will not be well-behaved. In order to avoid this difficulty, we must exclude the effect of the pressure jump (5)

with its discrete version as

p�iþ1;j;k � pþi;j;k ¼ J iþ1
C ¼ rj½ � ðn � s � nÞ�C; ð31Þ

in which J iþ1
C is the pressure jump at C between grid points ðiþ 1; j; kÞ and ði; j; kÞ.

It is legitimate to use a ghost value pþiþ1;j;k in the gas in defining the pressure gradient instead of the real

one p�iþ1;j;k ¼ pg, provided these two are related by the pressure jump J iþ1
C ,

pþiþ1;j;k ¼ p�iþ1;j;k � J iþ1
C ; ð32Þ
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which leads to a reasonable definition of the pressure gradient,

pþiþ1;j;k � pþi;j;k
Dx

¼
p�iþ1;j;k � pþi;j;k

Dx
� J iþ1

C

Dx
: ð33Þ

Then Eq. (33) is substituted into (29) and the extra generated term J iþ1
C =Dx is moved to the right-hand side.

It should be noted that we can find Ji;j;k at each grid node (i; j; k) near the interface, provided that n at point

ði; j; kÞ is calculated by taking the gradient of the indicator function (28) and so are the curvature j (6) and
the normal viscous stress term n � s � n. The normal viscous stress term at grid nodes located in the gas is

obtained from the extrapolated velocity field found before. With the aid of the indicator function I , the J iþ1
C

at C is interpolated by

J iþ1
C ¼ Jiþ1;j;kjIi;j;kj þ Ji;j;kjIiþ1;j;kj

jIi;j;kj þ jIiþ1;j;kj
: ð34Þ

All derivatives involving the jump condition, if any, in (29) can be treated in the same way. After the

above-mentioned treatment, the Eq. (29) is arranged as

1

Dx
piþ1;j;k � pi;j;k

Dx

� 	h
� pi;j;k � pi�1;j;k

Dx

� 	i
þ 1

Dy
pi;jþ1;k � pi;j;k

Dy

� �

� pi;j;k � pi;j�1;k

Dy

� ��

þ 1

Dz
pi;j;kþ1 � pi;j;k

Dz

� 	h
� pi;j;k � pi;j;k�1

Dz

� 	i
¼ q

Dt

u�iþ1=2;j;k � u�i�1=2;j;k

Dx

�
þ
v�i;jþ1=2;k � v�i;j�1=2;k

Dy
þ
w�

i;j;kþ1=2 � w�
i;j;k�1=2

Dz

�
þ J iþ1

C

Dxð Þ2
þ J i�1

C

Dxð Þ2

þ J jþ1
C

Dyð Þ2
þ J j�1

C

Dyð Þ2
þ Jkþ1

C

Dzð Þ2
þ Jk�1

C

Dzð Þ2
: ð35Þ

It can be seen that with Dirichlet (or Neumann) boundary conditions the above equations in the liquid

phase coupled with the known values p�i;j;k(pg) calculated from (4) in the gas constitute a symmetric linear

system, which is solved by a stabilized conjugate gradient squared (CGSTAB) method [11,35].

It may be noted that, with this procedure, the matrix of the linear system for the pressure is symmetric

and independent of the density contrast between the phases. Thus, the convergence difficulties which

sometimes prevent the use of realistic density values with the original front-tracking method are obviated.
This is a particularly useful feature for phase-change calculations, where the actual vapor density must be

kept at its physical value to avoid errors in the latent heat calculation.
3.5. Numerical algorithm

The steps of the numerical procedure described above may be summarized as follows:

1. The computational step begins with an explicit advancement of the front (14) to the new position by the

interpolated interface velocity (16).
2. With this new position of the front at time level nþ 1, update the indicator function Iðx; tÞ by solving

the Poisson equation (10).

3. Identify the velocity and pressure nodes located in the gas and liquid regions from the sign of the indi-

cator function.

4. Update the pressure pnþ1
g in the gas domain from (4), after computing the gas volume.

5. Extrapolate the velocity field in the liquid far enough into the gas region as outlined in Section 3.3.

6. Compute the intermediate value of the new velocity field u�.
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7. Project u� onto its divergence-free component in the region identified by Iðx; tÞP 0 and solve for the

pressure pnþ1 from the Poisson equation (35) taking into account the pressure jump (5) at the interface.

Note that the surface tension and viscous normal stress are calculated on the nearby grid points, and

thereafter interpolated on the front.
8. Update the velocity field unþ1 from the new pressure pnþ1 (22).

9. Repeat step 5 with the updated velocity field unþ1 in the incompressible region so that all velocities near

the interface are consistently available at time level nþ 1.

0. Move to the next time level.
4. Validation tests

We now compare the results of the present method with those obtained by independent methods to

demonstrate its accuracy. All these other results are obtained from models or codes which have been amply

verified against experiment. Thus, agreement with them also ensures that our results would agree with

experiment, and we do not need to carry out an experimental validation explicitly. The first example shows

how the calculation of a compressible gas region can successfully be coupled with that of an incompressible

liquid. In the remaining examples, the gas region is effectively incompressible, so as to be able to compare

our results with those of the original front-tracking method.

4.1. A spherical bubble in an unbounded liquid

In this test, we compare the numerical solution for the free oscillations of a gas bubble as given by our

method with that given by the Rayleigh–Plesset equation [22], which describes the radial motion of a

spherical bubble in an unbounded fluid,

R€Rþ 3

2
_R2 ¼ 1

q
pg

 
� p1 � 2r

R
� 4l

_R
R

!
; ð36Þ

where p1 represents the ambient pressure and R the instantaneous bubble radius.
ig. 3. Comparison between the present Navier–Stokes solution and the Rayleigh–Plesset solution [22] for the free radial oscillation of

stationary gas bubble with an equilibrium diameter of 47.5 lm released from an initial diameter of Di ¼ 50 lm. The grid resolution is

60� 360� 360 on a domain of 12Di � 12Di � 12Di.
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In the test case shown below, since we consider a stationary, initially over-expanded gas bubble in an

unbounded liquid, free inflow/outflow boundary conditions are applied on all the boundaries of the

computational domain. The equilibrium radius R0 is 23.75 lm and the bubble is released at time 0 from a
slightly over-expanded state, Rð0Þ ¼ 25 lm, so that it executes damped free oscillations. The other physical

parameters have values appropriate for water: liquid density q ¼ 1000 kg/m3, surface tension r ¼ 0:07 N/m,

viscosity l ¼ 0:001 kg/m s, c ¼ 1.4, p1 ¼ 1 atm.

We found that, in order to reduce the boundary effects, it was very important to use a large compu-

tational domain with a reasonably high resolution. We used a domain size equal to 12 times the bubble

initial diameter and 360� 360� 360 nodes to ensure that the maxima and minima of the oscillation were

adequately resolved.

The present results (open squares) are compared with the Rayleigh–Plesset ones (solid line) in Fig. 3. It is
seen that there is a very good agreement between the two. We did not attempt a similar comparison for a

larger initial over-expansion for reasons of computational time, and also because the spherical shape of

oscillating bubbles is known to become unstable at high amplitude. This physical instability of course
Fig. 4. Comparison between the present numerical simulations and those by Tryggvason�s finite difference/front-tracking (FD/DT)

method [34] for a buoyant bubble with Eo ¼ 3:57 and Mo ¼ 3� 10�7. The nondimensional initial bubble radius Ri is 0.25. The

60� 60� 120 grids are on a 1� 1� 2 domain. The snapshot pairs shown are taken at times 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45,

and 0.5 (left to right, top to bottom).
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would be entirely missed by the Rayleigh–Plesset solution, which would prevent a meaningful comparison

with our results.
4.2. Comparison with the finite difference/front-tracking method

In the previous test, the bubble was stationary and spherical. Now we compare our numerical results

with those obtained from Tryggvason�s finite difference/front-tracking method [34] for the case of a bubble

rising under gravity. Compressibility effects inside the gas bubble can be ignored when the bubble rises over

a sufficiently short distance. Thus, it is legitimate to make a comparison between the two approaches for

buoyant bubble simulations, even though in Tryggvason�s front-tracking method the gas is assumed to be

incompressible.
Two nondimensional numbers, the E€otv€os number (Eo ¼ qgD2

i =r) and the Morton number

(Mo ¼ gl4=qr3), are used to describe the process, in which Di is the initial bubble diameter.

Fig. 4 shows a series of snapshots taken at different times during the bubble rise. For this case, Eo ¼ 3:57
andMo ¼ 3� 10�7. For a liquid with viscosity l ¼ 0:01 kg/m s and other properties equal to those of water,

at normal gravity, these values are for an air bubble with Di ¼ 5 mm. In each snapshot, both our results and

those for Tryggvason�s finite difference/front-tracking (FD/FT) method are presented. As the bubble rises,

it becomes ellipsoidal. In order to quantify the comparison, we ‘‘measure’’ the bubble shape in terms of the

bubble ‘‘horizontal’’ and ‘‘vertical’’ diameters during the bubble motion. The comparison between the two
sets of results is shown in Fig. 5. It can be seen that the comparison is quite good but shows indications of

diverging from the FD/FT results around the end of the simulation at t ¼ 0:5. We believe that this dif-

ference can be eliminated by using more nodes, but have not done so for lack of adequate computational

resources.

In the test which follows (Figs. 6 and 7), we decrease the surface tension by one order of magnitude, and

thus have larger E€otv€os (Eo ¼ 35:7) and Morton numbers (Mo ¼ 3� 10�4). As a result, the pressure force

exerted along its surface transforms the bubble into a spherical-cap-like shape. In Fig. 6, we have a

horizontal view of the rising bubble while Fig. 7 shows pictures taken looking from below. Fig. 8 is similar
to Fig. 5 and compares the bubble horizontal and vertical diameters as calculated by the two methods.
Fig. 5. Comparison between the horizontal and vertical bubble dimensions as computed by the present method and Tryggvason�s
finite-difference/front-tracking (FD/DT) method [34] for the buoyant bubble of the previous figure.



Fig. 6. Comparison between the present numerical simulations and Tryggvason�s finite difference/front-tracking (FD/DT) results [34]

for a buoyant bubble with Eo ¼ 35:7 and Mo ¼ 3� 10�4. The nondimensional initial bubble radius Ri is 0.25. The 60� 60� 120 grid

covers a 1� 1� 2 domain. The snapshots are taken in the horizontal direction and are at times 0.10, 0.15, 0.20, 0.25, 0.3, and 0.35 (left

to right, top to bottom).
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Again, it is seen that there is generally a good agreement between our results and those for the finite dif-

ference/front-tracking (FD/FT) method.

Fig. 9 shows the velocity distribution around the buoyant bubble as computed with the present

method. A cut is made through the center of the bubble for a clearer look at the velocity field in its

vicinity.
5. A gas bubble in a sinusoidal flow

In this section, we present an example of the application of this numerical method to a case in which the

compressibility of the gas in the bubble is important. This situation cannot be treated by the original front-

tracking method.



Fig. 7. Comparison between the present numerical simulations and Tryggvason�s finite difference/front-tracking (FD/DT) method

results [34] for a buoyant bubble with Eo ¼ 35:7 and Mo ¼ 3� 10�4. The nondimensional initial bubble radius Ri is 0.25. The

60� 60� 120 grid covers a 1� 1� 2 domain. The snapshots are taken looking up toward the computational domain at the same times

as in the previous figure (left to right, top to bottom).
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As sketched in Fig. 10, a gas bubble is set in a square tube and a sinusoidal inflow is imposed at the

bottom of the computational domain. At the exit of the domain outflow boundary conditions prevail while

no-slip boundary conditions are employed at the tube surface. Buoyancy is disregarded. The imposed in-
flow velocity is

Vin ¼ Vmax½cosðx3tÞ þ sinðx2tÞ�; ð37Þ

where xn is the natural frequency of the nth mode of the bubble shape oscillation:

x2
n ¼ ðn� 1Þðnþ 1Þðnþ 2Þ r

qR3
e

: ð38Þ

with Re the equilibrium bubble radius. When the bubble is driven at the natural frequencies of shape os-

cillations (38) in this way, the surface modes n ¼ 2 and n ¼ 3 are both excited parametrically, which leads to

asymmetrical bubble shape oscillations. Consequently, the bubble propels itself. The relevant theoretical



Fig. 8. Comparison between the horizontal and vertical bubble dimensions as computed by the present method and Tryggvason�s
finite-difference/front-tracking (FD/DT) method [34] for the buoyant bubble of the previous two figures.

Fig. 9. Velocity profile around the buoyant bubble of the previous three figures as computed from our numerical simulation.
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analysis and experimental observations for the self-propulsion of asymmetrically pulsating bubbles are

presented by Benjamin and Ellis [1], Feng and Leal [10], and Reddy and Szeri [26], and others. In the case

illustrated here, the size of the rectangular cell is 1 cm � 1 cm � 2 cm. An air bubble with radius of 0.25 cm

is located 0.5 cm away from the inlet of the cell. The inflow velocity amplitude is Vmax ¼ �1 mm/s. The other

physical parameters are the same as those used in Fig. 3. Under the action of the imposed sinusoidal inflow

(37), the bubble ‘‘swims’’, which is shown in Fig. 11 by plotting the bubble centroid position versus time. In

addition to translation, the compressibility of the gas makes the bubble volume oscillate as well. Figs. 12

and 13 present a sequence of snapshots during the bubble oscillation and translation.



Fig. 11. Bubble centroid position vs. time for a gas bubble of radius 2.5 mm in water driven by the imposed sinusoidal inflow (37).

The natural frequencies for the surface modes n ¼ 2 and 3 are 37 and 67 Hz, respectively.

Fig. 10. A gas bubble under an imposed sinusoidal inflow.
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6. Conclusions

A new numerical method for the solution of three-dimensional multiphase flow problems has been

described. In this method the front-tracking approach is adopted to explicitly track the phase boundary, the

unsteady Navier–Stokes equation is solved in the liquid domain, while the polytropic model of compression

is employed in the gas domain. The interface is treated in a sharp fashion by the Ghost Fluid Method and a

velocity extrapolation technique based on a Lagrange multiplier method. Validation tests have shown good
agreement between the results by this method and those by the Rayleigh–Plesset equation and Tryggvason�s
finite difference/front-tracking (FD/FT) method. As a further example, the effects of an imposed sinusoidal

inflow on a gas bubble have been investigated. It has been shown that, under the action of a suitable inflow,

parametric shape oscillations are induced which cause the bubble to ‘‘swim’’.



Fig. 12. Sequence of snapshots of the oscillating and translating bubble of the previous figure taken at dimensionless times (left to

right, top to bottom) x3t=ð2pÞ ¼ 0, 0.2060, 0.4001, 0.6051, 0.8100, 1.004, 1.209, 1.306, 1.403, 1.508, 1.603, 1.700, 1.808, 1.906, 2.007,

2.106, 2.206, and 2.305.
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A prominent feature of this method is that it not only possesses the advantages of the explicit front-

tracking approach, but also treats the interface in a sharp fashion in contrast to the original front-tracking

method [34]. Further applications of the method may be found in many other multiphase flow problems
such as bubbly flow, slug flow, turbulent multiphase flow and so on.

Efficiency is an important issue in multiphase flow computations. In both the front-tracking method [34]

and the present method, solving the pressure equation absorbs a substantial amount of computing time.

Since in the pressure equation of the present method the gas density is not included in the solution of the

pressure Poisson equation, the convergence rate for solving this equation is faster than for the front-

tracking method [34], in which the dependence of the density on the spatial coordinates in the pressure

equation slows down the convergence, especially for high liquid/gas density ratio. However, the present

method requires additional computing time in carrying out velocity extrapolation on the grid points near
the interface on the gas side, particularly finding the neighboring grid nodes in the liquid for extrapolation

as discussed in Section 3.3. Therefore, the overall cost of the present method is comparable to the front-

tracking method. However, it would be easy to parallelize the velocity extrapolation step since each grid

node is treated independently of the others.



Fig. 13. Continuation of the sequence in the previous figure at dimensionless times (left to right, top to bottom) x3t=ð2pÞ ¼ 2:305,

2.404, 2.503, 2.603, 2.702, 2.805, 2.910, 3.002, 3.107, 3.210, 3.311, 3.404, 3.508, 3.601, 3.704, 3.806, 3.901, and 4.007.
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